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It  has  been  shown that arrays of voltage  controlled  oscillators  coupled to 
nearest  neighbors can be  used to produce  useful  aperture  phase  distributions 
for  phased  array  antennas.  However,  placing  information on the  transmitted 
signal  requires  that  the  oscillations  be  modulated.  Frequency  (phase) 
modulation  is  the  most  natural  for  such  systems.  The  modulating  signal is 
applied to the  tuning  ports of the  oscillators  producing  a  frequency shift on 
which  is  coded  the  information to be  transmitted.  The  theory  of  such arrays 
predicts  the  transient  behavior of the  array  under  modulation  and  the  present 
paper  reports  on  efforts to verify  these  theoretical  predictions  experimentally. 
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We  begin  with  a  short  description of the  theory  of  coupled  oscillator  arrays 
and  the  concept of using  such  arrays  to  achieve  beam  steering  in  phased  array 
antennas.  Next  we treat the  case  of  square  wave  frequency  modulation  of the 
array  theoretically  and show that modulation  of  any  but all of the oscillators 
will  be  ineffective in transmitting  the  information.  Experimental  observations 
corroborating  these  theoretical  predictions  are  then  presented  and  conclusions 
concerning  the  manner in which  information  can  be  effectively  transmitted  are 
drawn. 
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Injection Locking 

~m, 4 A w , ~ ,  = -- 
is  tuned. 2Q A 

3 

Consider  a  single  injection  locked  oscillator. We represent  the  signals as 
complex  functions as indicated, The  injection  signal is Vinj in which Ainj is the 
amplitude  and oinj is the  radian  frequency.  Similarly  the  output  signal 
amplitude  is A and  the  phase is 0 which  is  the sum of  the  phase  due to 
oscillation, oinj t, and  the  relative  phase, Cp. Aolock is  the  radian  locking  range 
which,  as  shown,  depends on the Q of  the  oscillator  and  the  strength of the 
injection  signal  relative  to  the  output.  In  steady  state,  of  course,  the  oscillator 
will  oscillate  at  the  injection  frequency.  The  transient  (time  varying)  behavior 
is  governed  by  the  indicated  differential  equation.  Using this equation  we  can 
formulate  the  theory of a  set of  coupled  oscillators. 
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JpL Coupled  Oscillators 

-N -N+1  -N+2 P N 

Here  we  adapt  the  preceding  differential  equation  to  describe  the  behavior  of  a 
linear  array of coupled  oscillators  with  nearest  neighbor  coupling,  Using  a 
continuum  model  of this description  leads to the  partial  differential  equation 
shown  at  the  bottom of the  vugraph. Tau is  time  multiplied by the  locking 
bandwidth  of  the  oscillators. 
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I '  Coupled Oscillators 
(Continued) 

Define the  phase  of  the  ith  oscillator, 4, ,by: 

Then, 
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We define  the  phase of the  ith  oscillator with respect to a  reference  frequency 
to be  selected to be  the  initial  ensemble  frequency of  the  array  which  has  been 
shown  to  be  the  initial  average of  the  oscillator  tuning  frequencies. In the case 
where  the  oscillator  at  x=b  is  detuned by C (measured in locking  ranges),  the 
partial  differential  equation  we  wish  to  solve  take  the  form  shown. 
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The Finite Array 
Boundary  conditions  can  be  derived  from, 

Tune  added  oscillators so that, @(-a - 1) = @(-a) 

Then, 

That is, the classical 
Neumann conditions. 
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To  find  the  solution  corresponding  to an array  of finite length,  2a,  one  must 
effectively  add  homogeneous  solutions of the  equation to the  particular 
integral  in  sufficient  amounts to satisfy  the  boundary  conditions  at  the  ends of 
the  array.  These  boundary  conditions  can  be  ascertained  using  the artifice 
indicated  here.  That is, two  fictitious  oscillators are added to the  array,  one at 
each  end.  These  oscillators  are  assumed  to  be  dynamically  tuned  in  such  a 
manner  as to maintain their phase  equal  to  the  phase  of  the  corresponding 
actual  end  oscillator. This condition  assures  that  no  injection effect is 
transmitted  between  these  pairs  of  oscillators.  This  shows that the correct 
boundary  condition is one of classical  Neumann  type  applied  one  half  unit 
cell  outside  each  end of the  array. 
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4 
Beamsteering Dynamics 

, 
Equal  and  opposite  detuning  of  the  end  oscillators;  i.e., 

According  to  Liao,  et.al.  [IEEE  Trans.  MTT-41,pp.  1810-181 15, Oct.  19931, 
beamsteering is accomplished by  equal  and  opposite  detuning  of  the  end 
oscillators  of  the  array.  The  solution  for  the  phase  distribution can be  obtained 
from the  solution  for  detuning  one  arbitrary  oscillator (x=b) by superposition 
(subtraction)  of two solutions,  one  for  b=a  and  one  for  b=-a.  The time domain 
result  is  as shown. 
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Far Zone Radiation Pattern 

This plot  shows  the  dynamics  of  the  far  zone  radiation  pattern  during 
beamsteering. It was  obtained by computing  the  radiation  pattern  for  each 
time  value  by  integration  over  the  aperture  using  the  phase  solution 
represented  on  the  previous  vugraph.  Note  that  the  beam  integrity  and 
sidelobe  structure is maintained  throughout  the  transient  period. 
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Steady State Steered Beam 

In  steady  state  the  phase  distribution  across  the  array is parabolic.  The  even 
part  is  controlled by the  sum  of  the  left  and  right  end  tuning  while  the  odd 
(linear) part is  controlled by their  difference.  Thus,  for  equal  and  opposite 
detuning  the  distribution is linear  which is, of course, just that  needed to 
produce  a  well  formed  off-axis  (steered)  beam. 
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J P L  
Frequency Modulation 

Appear to be three options for frequency 
modulation. 
- Modulate one oscillator. 
- Modulate more than  one oscillator. 
- Modulate  all of the oscillators. 

The first two options can  be immediately 
discarded for the following reason. 

1 1  

It will  be  shown in the following that to effectively place information on the 
radiated  beam it is necessary to modulated  all  of the oscillators in the array 
simultaneously. 



JpL The Finite Array Solution 

Oscillator Phases 

This is a  graphical  representation of the  solution  for  the finite length m a y  with 
oscillator “5” step  detuned at t=O. Here  again  it  is  merely  a plot of the 
analytical  solution  obtained via the  Laplace  transformation. Note that the 
steady  state  distribution  is  parabolic  and  produces  a  badly  spoiled  beam.  Thus, 
no  matter  how  slowly  one  modulates  the  oscillator,  the  beam  will  never  reform 
after  each  switch  in  modulation  voltage. If, on  the  other  hand, all of the 
oscillators  are  modulated,  the  phase  distribution  will  across  the  aperture  will 
remain  unchanged  and  the  beam  will  be  preserved  throughout  the  modulation. 
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The Proposed Scheme 
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We propose to implement  modulation  of  all  the  oscillators  using  the  network 
shown.  While  resembling  a  corporate  feed  network,  the  line  lengths  here are 
not  critical,  as  they  would  be at rf,  because  the  network  operates at baseband. 
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Consider a Square Wave 

The  source  term  becomes, 

7r m T hmod = -u(z) + Cn(-l)"u(z - n-) 
2 n=l 2 

The  Laplace  transform  is, 

and  we  wish to solve, 
d 2  F 1 
" 

a C 2  sF = --tan(:) s 
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The  behavior  of  the  proposed  array  under  square  wave  modulation can be 
ascertained  theoretically  using  the  diffusion  equation  presented  earlier.  The 
source  term  is bod. Solution is effected  via  the  Laplace  transform.  This 
source  waveform  has  a known Laplace  transform shown here and  the  resulting 
transformed  equation is given  at  the  bottom of the  vugraph. 
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J P L  Square Wave Continued 
A particular  integral is, 

Adding  two  complementary  functions  gives, 

Boundary  conditions  require that A and B be 
zero so the  inverse  transform  becomes, 

n m T T 
n=l 2 2 

~ ( z ) = 5 - u ( Z ) + ~ n ( - l ) " ( ~ - n - ) u ( ~ - n - )  2 

That is, the  array  integrates  the  modulation  signal. 
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Proceeding  with the solution, we  add to a  particular  integral  the  appropriate 
amounts of homogeneous  solutions  to  satisfy  the  boundary  conditions 
(Neumann  conditions) at the  array  ends.  The  result  shown here indicates that 
the  array  transmits  a  frequency  modulated  signal. For phase  modulation  the 
array  basically  integrates  the  modulation  signal,  Thus,  we  propose that in this 
case  the  information  signal  be first differentiated  and  then  applied  to  the  array 
modulation  network  resulting in transmission of an appropriately  phase 
modulated  signal. 
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Mixers as Phase 
Detectors 
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The  experimental  setup  for  verifjring  the  theoretically  predicted may  behavior 
makes use  of  mixers as phase  detectors as shown here.  The 90 degree  hybrids 
are  used  to  make  the  mixer  outputs  zero  when  the  corresponding  two 
oscillators are in phase.  (Without  the  hybrids,  the  output  would  be zero for a 
90 degree  phase  difference,) Ten dB  couplers  are  used  to  derive  the  signals to 
be sent to  the  radiating  elements.  While  one  might  expect that the mixer 
signals  would  be  derived in this manner  instead,  the  present  arrangement 
provides  adequate  signal for driving  the  mixers  while  retaining  the  ability to 
measure  radiation  patterns  since  the  receiver is more  sensitive  than  the  mixers. 
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Laboratory Setup 
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This  is  a  photograph of the  laboratory  equipment  used to diagnose  the  array 
behavior. 
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JlPl Diagnostic Circuitry 
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This is a photograph of the array  with the added diagnostic circuitry. 
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Virtual 
Instrument 

Display 
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The mixer outputs are read by a  “Virtual  Instrument”  implemented in 
LabView. The  display is shown  above for tuning  which yields a uniform 
aperture phase distribution. 
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If the  end  oscillators  are  detuned  oppositely,  a  linear  phase  distribution  results 
as shown  here. 
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J P L  
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If only  oscillator  seven is detuned,  a  parabolic  distribution  results. 
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Virtual 
Instrument 

Display 
(Oscillator 

Seven 
Detuned) 

Detuning oscillator seven  in  the  opposite direction also produces a parabolic 
distribution. Modulation of oscillator  seven  with a square  wave switches 
between this and the preceding  distribution  and permits observation of the 
transient behavior of the array. 
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J ~ L  Modulation of One End 
Oscillator 
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Implied  Locking  Range: 26.5 MHz 23 

Using the system illustrated in the preceding  vugraphs,  the above results on the 
left  were  obtained by modulating oscillator 7 with  a .2 volt peak to peak square 
wave injected into the oscillator tank circuit between the varactor and the 
resonating  inductor  through  a  very large (0.1 microFarad) capacitor. The 
mixers  were calibrated to  permit  conversion  of the measured output voltage to 
degrees of  phase difference between adjacent oscillators. The corresponding 
theoretical prediction is shown on the right.  Comparison of the plots permits 
confirmation of the  locking  range of the oscillators. 
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Virtual 
Instrument 

Display 
(Oscillator 

Five Detuned) 
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If only oscillator five is detuned, a dual  parabolic distribution results. 
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Virtual 
Instrument 

Display 
(Oscillator 

Five Detuned) 
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Detuning oscillator five in the opposite direction also produces a dual 
parabolic distribution. Modulation of oscillator five with a square wave 
switches between this and the preceding distribution and permits observation 
of the transient behavior of the array. 
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J P L  Modulation of One 
Internal Oscillator 
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Using the system  illustrated in the preceding  vugraphs,  the above results on the 
left  were obtained by modulating oscillator 5 with  a .2 volt peak to peak  square 
wave injected into the oscillator tank circuit between the varactor and the 
resonating  inductor  through  a  very large (0.1 microFarad) capacitor. The 
corresponding theoretical prediction is shown on the right. Comparison of the 
plots again confirms the locking  range of the oscillators. 
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JpI Modulation of All Oscillators 
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If all of  the oscillators are modulated  simultaneously  one  should theoretically 
observe zero  phase  differences.  Thus,  in  order to see the transients, we 
detuned the oscillators to produce  observable  phase differences and then 
applied the modulation  to  all  of  them. This permits the determination of the 
time constants from  which  the  locking  range can again be computed. Note 
that the short time constants are the  ones relevant to the locking range 
computation. The  long time constants are related to the large bypassing 
components used  in the tuning  power  supply circuit. 
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Selecting the channel 1 signal from the preceding  graph,  we fit the natural 
logarithm of the function to a set  of  straight lines whose slopes give the time 
constants involved.  The  long time constant  is related to the large bypassing 
components used on the tuning  supply.  The shorter time constant implies a 
locking range of 28.7  MHz  which  is quite constant (within the experimental 
error) with the 26.5  MHz  obtained  previously and with  the result of direct 
measurement of the locking  range. 

28 



J P L  Concluding Remarks 

Modulation of one  oscillator is ineffective. 
- Steady state phase distribution is parabolic. 
- Average  locking range can  be  inferred from 

- Theoretical  predictions  experimentally verified. 
transients. 

All oscillators  must be modulated. 
- Steady state phase distribution is linear. 
- Transient  response is that of  one oscillator. 
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From the presented results, we can  conclude  that the theoretical predictions are 
born  out in the measurements  and  that  both  imply  that effective modulation 
can only  be achieved by simultaneously  modulating all of the oscillators in the 
array. 
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